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1 Summary

The objective of the project was to improve efficiency of accurate meth-
ods for predicting radiation characteristics of antennas mounted on large
platforms.

The computational challenge in this type of problems consists mainly of
the necessity of a detailed modeling of the antenna and, at the same time,
describing the much larger platform and its interaction with the antenna
system. While even a complex antenna subsystem can be solved without
much difficulty by the available rigorous MoM methods, computation of the
antenna interaction with the platform may be out of reach of the present
fast solvers, and, at the same time, asymptotic high-frequency solution tech-
niques may not be sufficiently versatile and accurate for application to re-
alistic problems. In addition, in problems of antenna radiation it would be
highly desirable to develop efficient direct solution methods, which would
allow predicting the radiation distribution in the entire angular range.

In this context, the goal of the present project was to make progress
in developing methods alternative to the presently prevailing fast iterative
solution techniques. Some approaches along these lines include Refs. [1, 2,
3, 4, 5, 6].

Our work was concentrated on an attempt of devising a viable computa-
tional scheme based on utilization of numerically constructed basis functions
defined on large supports, and characterized by strongly collimated radiation
patterns; in the following we refer to them as "directional basis functions"
(DBFs). The concept of the solution scheme was to model the antenna using

the conventional MoM techniques, to parameterize the platform in terms of
DBFs, and to describe interactions partly iteratively (for interactions corre-
sponding to multiple-scattering "bounces"), and partly by means of direct
solution methods (for the remaining interactions, including propagation of
creeping waves).

In the present project, Monopole Research concentrated on development
of the DBF construction techniques, while the Yale University pursued the
area of research related to direct solution methods.

The main part of our work was to implement the concept of DBFs as
a mathematically precise description of well collimated beams in terms of
specific current distributions generating such radiation patterns. This ap-
proach may be regarded as a rigorous realization of the concept of "rays"
in high-frequency asymptotics - a mechanism not taken into account in the
conventional impedance matrix compression methods. It is hoped that such
an approach will result in a highly sparse impedance matrix (dominated by

I
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couplings due to matching collimated beams radiated and received by the
DBFs), which, in addition, might be amenable to the application of direct
solution methods.

We stress that it appears difficult to achieve the above goals by means
of constructing analytically parameterized DBFs based on asymptotic high-
frequency methods, for at least two reasons: (a) the complexity and com-
putational cost of the algorithms grows rapidly with the order of the high-
frequency scattering mechanisms, and (b) in general, for a given support size,
the resulting basis functions are not guaranteed to generate radiated beams
of optimal angular concentration; in fact, radiation patterns generated by
such basis functions tend to have high "side-lobes" (unless the behavior of
the function near the boundary is regularized by using smooth partition of
unity or similar, rather complex, techniques).

In this context, the principal advantages of the numerical approach to
the construction of directional basis functions presented here is its relative
independence of the scatterer geometry and the optimal angular collimation
of the radiation patterns of the DBFs.

The main results we obtained in this effort are as follows:

" We have been able to implement a numerical scheme for construction
of DBFs, applicable to realistic surface geometries, and providing, in
practice, near-optimal angular collimation of radiation patterns. We
confirmed that the angular widths of the pattern scale in the expected
way with the support size. We illustrate the result of the algorithm
on a number of cases involving realistic surface geometries (see Sec-
tion 2.3).

"* We found the numerical cost of DBF construction is be relatively high,
and, as expected, rapidly growing with the size of the basis function
support. However, on the basis of our effort under a parallel contract,
where we worked on a multilevel scheme of DBF construction, we
expect the cost can be reduced to the level making the procedure
practical in realistic problems (see Section 2.4 for a brief description).

"* We analyzed a number of scattering problems discretized by means
of the constructed DBFs. We encountered here difficulties related to
ill-conditioning of the impedance matrix in the DBF space resulting,
essentially, from the insufficient linear independence of the DBFs. The
conditioning problems seem to be of rather fundamental nature, and
can be ascribed to an inherent conflict between conditioning and an-
gular collimation, which can be summarized in a statement that
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a complete set of collimated "band-limited" beams (i.e., beams
generated by a spatially limited source) must involve angularly
overlapping beams, and the overlap may lead to ill-conditioning.

One can also view construction of DBFs as a problem closely analogous
to antenna (or antenna array) synthesis, i.e., an inherently ill-posed
inverse scattering problem.

In view of these difficulties, we directed a large part of the effort to
the analysis of the conditioning problem:

a We carried out a detailed analysis of the origin of the ill-conditioning
problems, and initiated efforts at their resolution. These efforts are
discussed in Section 2.5:

- In Section 2.5.2 we describe an attempt of modifying the opera-
tors whose eigenfunctions ("radiation modes") form a basis from
which the DBFs are constructed. The modification is expected
to allow us to limit the range of eigenvalues of the operators,
and thus to improve conditioning of the DBF system. An inter-
esting feature of this approach is that the operators in question
describe spatial concentration of the "radiation modes", and al-
low construction of basis functions concentrated in both angular
(essentially, Fourier) and configuration space. However, this tech-
nique requires that the supports of DBFs significantly overlap in
space, which may again deteriorate conditioning. We have not
yet reached a definite conclusion on the viability of the approach.

- In Section 2.5.3 we report on an implementation of a simple itera-
tive solution scheme, in which the DBF-space impedance matrix
is used merely as a compressed matrix representation. In this
approach the "near-field" part of the matrix is not discretized in
terms of DBFs, which results in a significantly better condition-
ing.

e In the area of the development of fast direct solvers, the Yale University
group designed and implemented a fast direct solver for objects in
both two and three dimensions that are long and thin. An important
feature of the scheme is its effectiveness in both high and low-frequency
environment.

One of the principal tools in the development of algorithms of this type
is the concept of "skeletonization". It was shown that under certain

w
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conditions (highly relevant to the design of scattering algorithms), in-
troducing a randomized element into skeletonization schemes leads to
radically improved efficiency and reliability.

In summary, we believe that our STTR Phase I effort contributed to the
development of

"* a well defined mathematical procedure for specification and numerical
construction of directional basis functions,

"* new efficient algorithms (with randomized elements) applicable to fast
direct solution methods.

We anticipate that, as soon as the encountered difficulties are resolved, the
above developments will form important building blocks for an efficient ad-
vanced antenna pattern prediction software.

2 Numerical construction of directional basis

functions (DBFs) (Monopole Research report)

2.1 General features of the approach

We consider a problem of electromagnetic radiation or scattering on a per-
fectly conducting (closed or open) surface S. In this case the source of
radiation are the surface vector (electric) currents, tangential to the surface;
we denote these sources s(r), r E S.

The problems of acoustics and some problems of elastodynamics can
be formulated by simply replacing the vector sources s(r) by scalar ones,
s(r). More general problems of elastodynamics will require using vector
displacement fields.

In order to specify the problem of constructing DBFs, we construct a
set of bounded connected areas Mi ("patches") covering the surface S (we
may have to allow for some overlap between the patches).

Our goal is to construct, for each patch Mi, a set of basis functions
T(')(r), supported on the patch, which would generate a complete set of
maximally collimated radiation patterns. The two requirements which would
ensure an efficient numerical solution scheme are:

(i) a high angular collimation, and the resulting high impedance matrix
sparsity, and
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(ii) a high degree of linear independence of basis functions, and thus a
reasonable conditioning of the resulting basis and of the impedance
matrix in that basis.

As we indicated above, these two requirements are, to some extent, in mutual
conflict: a finite patch size implies that the generated radiation patterns
are band-limited in the angle (or in Fourier space); therefore, the angular
distributions must have some overlapping "tails", and cannot be strictly
linearly independent.

In the context of high-frequency scattering it is useful to separate the
possible current distributions into a set of band-limited functions (oscillating
no more rapidly than allowed by the wave number k), and the remaining
ones, involving higher Fourier transforms, limited only by discretization.
The class of band-limited functions is sufficient to correctly reproduce far-
field interactions, and it is only this set which we attempt to represent in
terms of DBFs.

In the following we give a brief overview of our approach to construction
and utilization of DBFs, present the main results, and describe attempts at
resolving the encountered difficulties.

2.2 Overview of the solution procedure with DBFs

In order to establish the main concepts, we give here a short description of
our approach to numerical construction of the DBFs and their use in solving
radiation and scattering problems.

2.2.1 DBF construction

We consider a frequency-domain radiation or scattering problem in free
space, characterized by the wave number k and the wavelength A = 27r/k.
The asymptotic (transverse) field F. radiated in the direction el by the
considered tangential vector sources s on a given patch M M- Mi is

F() =di(1) Jd2re ik 4r s(r) , (2.1)

M

where

I(RI) = I - e1l1" (2.2)

projects the field onto the plane orthogonal to the radiation direction. (In
the electromagnetic scattering problem with a perfectly conducting surface
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the source s is the surface electric current, and FOO is the electric field.) The
total radiated power is then

P fd2q IF.(el)12 (2.3)

S2

where S2 denotes the unit two-sphere of directions el, and the angular inte-
gral is normalized to unity, f d2

4 = 1.
Similarly, we define the power radiated into a certain solid angle' 1 C S2

as

P(Q)= J d24 IF.(,4)12. (2.4)

In terms of the sources s the power (2.4) can be expressed as

P(fQ) = f d2 r dd 2r' (r). h0 (r - r') s(r') - (s, HM (Q) s) , (2.5)

M

where the r.h.s. defines the integral operator HM(fQ) and the inner product
(., .), and where the dyadic integral kernel hn is given by

h0 (r) = 2 d2( (I_ - el -) eik'r (2.6)

In the case of the total power (Q = S2) we have

P J d2r d2r'-9(r) h(r - r') s(r') = (s, HM s) , (2.7)

M

with

S[1 -j (kr)] + j 2 (kr) i.. (2.8)
S 2

where the last expression (with the spherical Bessel functions jn) is related to
the imaginary part of the Green function of the usual electric-field equation.
In the following we refer to the operators HM(cl) and HM as the angular

'An important theoretical and practical question is how to specify a reasonable set of
such angles. We discuss this problem in Section 2.3.3.

I
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and total power operators for the given surface patch M. We assume in the
following that the operators act in the space L2 ((M) of square integrable2

tangential-vector functions s(r) on M.
We now formulate the radiation collimation problem in terms of the

Rayleigh quotient

P(Q7) = (s, H. (f) s) (2.9)
P - (s,HMs) '

representing the fraction of the power radiated into the solid angle Q relative
to the total power. By construction,

0 < ns]< 1. (2.10)

The source distribution s generating a radiation optimally collimated
within the given angle Q is the function s maximizing the ratio jn[s]. We
construct a set of DBFs associated with the given surface patch M simply
as a set of source (current) distributions sa, a- 1, 2,... , of sufficiently high
angular concentration,

1 - T F[sa] < 1, (2.11)

where 0 < -r < 1 is an appropriately defined "power leak tolerance" (we
refer to the (small) quantity 1 - ýnlsa] as the power leak - the fraction of
the power radiated outside the angle Q)).

Clearly, the number of solutions corresponding to angularly concentrated
radiation patterns will be limited by the size of the patch, and will also
depend on its shape. For sufficiently regular patches it will be of order of
the Shannon number of the patch (proportional to its area in the units of
the wavelength squared), i.e., to the number of linearly independent band-
limited functions supported on the patch. It follows that the set of DBFs
(understood as generating collimated radiation distributions) is not sufficient
to represent arbitrary source distributions on the patch (limited only by
discretization). The complete set of basis functions must also include current
distributions weakly radiating and involving high Fourier transforms. For
simplicity of notation we will denote all these functions by TI,, understanding
that only a part of them is associated with collimated radiation patterns.

2 The square integrability assumption may be too weak in the case of electromagnetics,
as is it known that requirements of locally finite energy of the fields usually restrict currents
to smaller spaces, typically Sobolev spaces. This question requires further analysis in the
present context.
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Maximization of the angular concentration factor (2.9) leads (by means
of functional differentiation with respect to 9) to the stationary point con-
dition, which has the form of the generalized eigenequation

f d2r' hn (r - r') Sa(r') = ýa f d2r' h(r - r') sa(r') (2.12a)

M M
or

HM(fQ) Sa = a HM Sa, (2.12b)

where a labels the eigenvalues and eigenfunctions. In order to find the
source distribution of the best collimated radiation pattern, we have to find
the eigensolution to the highest eigenvalue •.

The angular collimation problem just defined belongs to the category of
"cconcentration problems", which have been investigated by Slepian, Landau,
and Pollak [7, 8, 9, 10] for band-limited functions on the real line, and later
generalized to functions of several variables [11, 12, 13, 14, 15, 16, 17].

As follows from the definitions of the kernels (2.6) and (2.8), the operator
HM(Q) (and thus H.) is

1. self-adjoint,

HM (Q) = H4 (Q), (2.13)

since

hn(r - r') = hT(r' - r) , (2.14)

2. positive semi-definite (from Eqs. (2.4) and (2.5)), and

3. Hilbert-Schmidt (hence compact), since

Tr (H;(Q) HMg(Q)) f d2r d2r' Ihf(r - r')12 < o. (2.15)

M

The above properties of the operators ensure that their spectra are discrete,
non-negative, of finite degeneracy for positive eigenvalues, and with the only
possible condensation point at zero.

A conventional approach to solving the generalized eigenproblem (2.12)
is to first solve the eigenproblem defined by the r.h.s. operator HM, i.e.,

HM fA, = q, f/. (2.16)

I
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The spectrum is non-negative and discrete, and the eigenfunctions can be
chosen orthonormal,

(f,,, f,) d2r Y fv (r) = . (2.17)
M

Physically, the eigenfunctions f., are (square-integrable) current distribu-
tions on the patch M, to which we refer as "radiation modes". The corre-
sponding eigenvalues 77, are the powers radiated by these currents,

,q, = (f ,, HM fQI (2.18)

(cf. Eq.(2.7)); we assume in the following that these eigenvalues are indexed
in the descending order.

By expanding the solutions sa of Eq. (2.12) in terms of the eigenfunctions

sa(r) y f, fu(r) , (2.19)
p

we obtain the discrete (matrix) eigenequation

E (f, , HM (Q) fv) yva S hM (9)t Yva 'a •?•Yia " (2.20)
Li 1/

By defining

I/pa -vFIi/a (2.21a)

and

hM (1) hm( )A , 1 , (2.21b)

Eq.(2.20) can be brought to the conventional matrix eigenequation form

X hM (Q) I. 9va = ýa IPa (2.22)

with a positive semi-definite Hermitian matrix [h(Q)),L], and with the re-
sulting orthonormal eigenvectors,

Ya Yb - Yla 9Ib b (2.23)
p
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(the superscript H denotes Hermitian conjugation). In terms of these eigen-

vectors, the eigensolutions of the generalized eigenequation (2.12), i.e., the
DBFs, are then, finally,

T.(r) 1_s.(r) yfy, f,(r) .-(r) (2.24)

The appearance of the factors 1/ /71 in this expression is of crucial
importance, as it may easily cause ill-conditioning of the system of eigen-
functions sa. In particular, since

(Xpa 1Pb) =Yj 1 ia Ygb (2.25)

the DBFs Ta would have been orthonormal, were it not for the factors
1/ V/I. In their presence, and if the eigenvalues 77, span a large range, the
conditioning of the set of eigenfunctions {Ta} is expected to have a larger
condition number.

In fact, since the operator HM is infinitely dimensional and compact, its
spectrum must have a concentration point at 77 = 0. Therefore, unless we can
cut off the sum over the eigenvalues at a reasonable threshold, 7a -Ž 77min, the
system of DBFs may be seriously ill-conditioned. We expect similar features
to persist also for the discretized, finite-dimensional operators. Therefore,

we devoted a large part of work in this project to

"* analyzing in more detail the origin of ill-conditioning of the DBF sys-
tem, and

"* investigating possible alternative formulations of the problem (in par-
ticular, modifications of the relevant operators) with the aim of im-
proving the conditioning.

These questions are discussed in the following subsections, after we an-
alyze the role of conditioning of the DBF system in solving scattering prob-
lems.

2.2.2 Solution of radiation and scattering problems in terms of
DBFs

For definiteness and simplicity we consider electromagnetic scattering prob-
lem described by the electric-field integral equation (EFIE)3 on the consid-

3 However, the general solution scheme discussed here does not depend on the specific
properties of the integral operator and the equation.
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ered perfectly conducting surface S,

J d2r'G(r - r') J(r') = -Ein(r) , for r C , (2.26)

S

where Ein(r) is the incident field, and G is the Green function

G(r) = g(r) - 12Vg(r) V. (2.27)

with the Helmholtz equation Green function

eik Irl
g(r) -- 47Irl (2.28)

In order to simplify the presentation, we do not consider the conventional
MoM discretization of the above equations, but rather directly compare
discretizations in terms of the sets of the orthonormal modes fA and in
terms of DBFs Ta"

In the first case we represent the discretized equations in the matrix form

A4 =b (2.29)

where b represents the incident field, 2 the solution, and A the impedance
matrix, all having block structure associated with the patches of the surface.
If Galerkin discretization is used, the current on the patch Mi is expanded
as

J(')(r) = E t(')f(fW(r) for r E Mi (2.30)

elements of the vector b are projections of the incident field on the basis
functions on the patch,

•). =_(f(i, E1 n) - J/ d2r�)f(r) . E" (r) , (2.31)

and the elements of the matrix A blocks are

Oi) = (f1(), Gf U)) f d2r J d2rf,()(r) . G(r - r') f,('(r') . (2.32)

M.i M
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For reasonably regular patch geometries and typical MoM discretizations
with spatial resolution of order 10 points per wavelength, condition numbers
of the matrix blocks are moderate, say, of order 103 for patch size of about
4A.

The discretized equations in the DBF space are

A -i5-b (2.33)

with the impedance matrix elements

a =fTWGT() dr d drl T(')(r).-G(r -r-') Tj) (r') (2.34)
ab b - f d a b I

Mi Mi

and expressions for the current and the r.h.s. analogous to Eqs. (2.30) and
(2.31).

It follows from Eq.(2.24) that the DBF matrix blocks are transforms of
the matrix blocks in the modes of the power operator,

a = pa a,( v Y)b (2.35a)
,UV

or
j(ii) k r(i) H AW(i) Vi(i) (2.35b)

where k(') and Y(i) are transformation matrices consisting of the elements
•(i) and g(i) for patches Mi and Mi. In terms of the transformation matrix

k = diag[V') k'(2) ... k(p)] (2.36)

(where p is the number of patches) we have then

A= - AS , (2.37a)

b = rH •, (2.37b)

S=Y •, (2.37c)

i.e., we can, formally, transform the original equation (2.29) into Eq.(2.33),
solve Eq.(2.33) (with a sparse matrix A), and transform the solution 5 to _.
However, since the transformation matrix blocks may have large condition
numbers (due to factors 1/V7. in Eq.(2.24)), the transformed matrix A
blocks (in particular, the diagonal ones) may also be ill-conditioned, and
solution of the system (2.33) may be practically impossible.

In Section 2.5 we address the conditioning problem in mode detail and

describe our attempts at its resolution.
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2.3 Construction of DBFs - numerical examples

2.3.1 Construction of eigenfunctions of the power operator

To illustrate construction of eigenfunctions of the power operator H",M for
patches, we consider a curved surface patch of sizes 3 A x 3 A (Fig. 1) located
approximately in the (x, y) plane, and discretized with n = 1384 MoM
unknowns (associated with the edges). The singular values o, (i.e., square-
roots of the eigenvalues q) of the power operator are shown in Fig. 2 (in
this particular example we used the singular-value decomposition algorithm
instead of the equivalent eigenvalue analysis).

10°

• 10•

104

10 200 400 600 000 1000 1200 1400

I T

Figure 1: The surface patch M• Figure 2: Distribution of the sin-
(n = 1384 MoM unknowns) used gular values of the power operator
in the analysis. HM of the patch of Fig. 1.

Some of the "radiating modes" (eigenfunctions of HM) are shown in

ZM

Figs. 3 - 6. Figs. 3 and 4 show the current distribution and the radiation
pattern for the eigenfunction associated with the highest eigenvalues i1, and
Figs. 5 and 6 the same quantities for a very weakly radiating mode with the
eigenvalue 774o0 ". 10-10 71. The radiation patterns are computed at Gauss-
Legendre quadrature points on the unit sphere S2 (for the quadrature order
L -27), and plotted in an approximate Mercator projection: the indices
o < n < 2L label the quadrature points in the range 00 < € < 360°, and the
indices 0 < n0 < L label the quadrature points in the range 180° > 0 > 0°
(n: = 0 corresponds to the vicinity of the south pole, 0 = 1800).

Generally, the current distributions and radiation patterns of the
strongly radiating modes are more regular than for the weakly radiating
ones. A more careful analysis shows, actually, that the strongly radiating
modes are of the type of standing waves. However, their radiation patterns

- - - -- - - - -------
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are practically never collimated to any appreciable degree. For example,
although the radiation pattern of Fig. 4 is peaked in two approximately op-
posite directions (0 - 900, ¢ - 90', 2700), the level of radiation outside the
peaks is not much reduced.

A characteristic feature of the weakly radiating modes is a large content
of high Fourier transforms, typically higher than the incident wavelength,
and, near the end of the spectrum, approaching the highest oscillation rate
allowed by the spatial sampling (discretization of the surface). This property
is consistent with the fact the eigenfunctions associated with small eigenval-
ues are not band-limited.

y #q: 1454 /1458

BOOO1 OOOO1JUQ
0.01

SX n -ph 4 5

Figure 3: The real part of the Figure 4: The radiation pattern fl
y-component of the eigenfunction generated by the eigenfunction of
fl, corresponding to the highest Fig. 3.
eigenvalue.
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#q: 1457 /1458
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y 0.01

0.4

.. . .. . . .,.: . . .. .

Figure 5: The real part of the Figure 6: The radiation pattern
y-component of the eigenfunction f40 generated by the eigenfunc-
f4 o0 , corresponding to a small tion of Fig. 5.
elgenvalue.

2.3.2 Construction of DBFs

As we described in Section 2.2.1, construction of DBFs amounts to finding
angularly well concentrated solutions of the generalized eigenequation (2.12),
i.e., solutions corresponding to eigenvalues close to unity.

For typical geometries, the spectrum of the eigenvalues '•a consists, qual-
itatively, of three subsets:

1. eigenvalues close to 1, i.e., solutions concentrated on ,

2. eigenvalues close to 0, i.e., solutions excluded ftom •), and

3. the remaining "transition eigenvalues", associated with solutions nei-
ther concentrated on, nor excluded from ft.

The number of solutions concentrated on a given region f• grows with the
size of the region. This behavior is similar to that observed in the case of
the functions concentrated on spherical cups [13, 16, 17]; however, in our
problem it depends on the subsystem geometry and on the shape of the
desired angular region.
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The minimum angular half-width of the region (in the case the DBF is

concentrated in one region only) is about 2 0 N, where

A
ON = - (2.38)

is the "Nyquist angle" for a radiating system contained in a box of side D (in
our example ON ý- 11'). Again, however, such a statement is approximately
valid only for a geometry filling more-or-less uniformly the entire box.

An important feature of the geometry-dependent radiation patterns is
that in some cases, if a high concentration is to be achieved, the region
Q must consists of several disjoint areas. For example, currents on a flat

surface radiate symmetrically with respect to the surface plane, and thus
the region Q must also be symmetric. A similar case is a thin, wire-like,
object, for which the admissible radiation patterns must be symmetric with
respect to the object axis.

We describe more details of our solution procedure in the following Sec-
tion. Here we only mention that we start with a set of tentatively defined
angular regions Q and gradually expand each region until the at least one
eigen-solution is sufficiently well concentrated, i.e.,

I - C, -< E (2.39)

where e is the power leak tolerance, related to the criteria of accuracy for
matrix elements and for sparsity of the DBF-space impedance matrix; we
typically take E in the range 10-5 to 10-4.

We show below some examples of DBFs constructed for the patch M of
Fig. 1, following the procedure outlined in Section 2.2.1.

In Fig. 7 we plot distributions of the eigenvalues ýa for a set of six regions

Qa, each consisting of two areas, concentrated near the poles (0 = 0' and
0 ý_ 1800). These regions are created during the DBF construction procedure
in which the initial region is being gradually expanded until the condition
(2.39) is met for at least some eigen-solutions.



17

#q =772 #6q=22 q:17208 - 399q0282 #q 282-----\_ : ._ .. . -..... w 3= 99 _ .. .. 0.1 --- -------- ---
°0l8 -- ---- '. -- ---- -#q..... ---. #q=399

* q 52 # =923
#q=651 0.01 -- ----- . q=651
# q =794 #q =784

06 0.001 ....

0.4 ............- 0.000 . -, . --------

le-06 --- - - - ---- - -------

0 le-07
0 100 200 300 400 500 600 8 12 16 20

a a

Figure 7: Distribution of the con- Figure 8: Distribution of the
centration factors & for a set of power leaks 1 - ýa corresponding
six angular regions Q of increas- to the same set of angular regions
ing sizes, with the indicated num- as in Fig. 7.
bers of directions within the re-
gion (the total number of direc-
tions is 2 L2 = 1458).

In the considered DBF construction our code has stopped expanding the
area Q after six steps, and selected 14 DBFs with power leaks below the
assumed tolerance e = 10-5. The radiation patterns of the first and last of
these DBFs are shown in Figs. 9 and 10.
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Figure 9: The radiation pattern Figure 10: The radiation pattern
IT11 of the first selected DBF for [T141 of the last selected DBF for
the largest angular region n of the largest angular region n of
Fig. 7. Fig. 7.
Figs. 7 and 8 show how the number of well concentrated solutions in-

creases with the growing size of the region n. Typically, the minimum
angular half-width of the region is about 2 0 N, where 0 N = A/(v-3D) is the
"Nyquist angle" for a radiating system contained in a box of side D. In our
case 0 N !- ""

However, in our example we selected the tentative angular region in
the direction of the positive z-axis (the north pole). Because of the relative
flatness of the considered patch (Fig. 1) it appears impossible to collimate the
radiation in one direction only - here in the north-pole direction - without
radiating fields in the symmetric direction. This effect is seen in Fig. 9 and
especially in Fig. 10, where there is a significant radiation emitted in the
direction of the south pole (no = 0). Consequently, the selected angular
region Q is rather wide, and, finally, contains about one-half of all directions
(this is partly due to the fact that the density of the quadrature points near
the poles is about twice as high as near the equator).

Figs. 11 and 12 show similar results for a more favorable case of the
tentative radiation direction along the x-axis (0 = 90 ', -= 00). In this
case it was possible to obtain a much narrower radiation pattern of the
constructed DBFs. Our algorithm expanded the initial angular region in
four steps, and selected, eventually, four solutions satisfying the condition
(2.39).
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Figure 11 Distribution of the con- Figure 12: Distribution of the
centration factors &a for a set of power leaks 1 - ýa corresponding

four angular regions Q of increas- to the same set of angular regions
ing sizes, with the indicated num- as in Fig. 11.
bers of directions within the re-
gion.
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Figure 13: The radiation pat- Figure 14: The radiation pat-
tern IT, 1 of the first selected DBF tern IT41 of the last selected DBF
for the last angular region 9 of for the last angular region 0 of
Fig. 11. Fig. 11.

2.3.3 Determination of angular concentration regions for DBFs

In the previous Section we showed results of constructing DBFs with radia-
tion patterns concentrated in prescribed angular regions Q. We now briefly
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describe the procedure we use to find such regions in a way consistent with
the geometry of the patch, and with the resulting physical restrictions on
the admissible radiation patterns.

Our goal is to determine a given number Kf of DBFs Ta concentrated
with the tolerance e (Eq.(2.39)) on as small as possible angular regions f•a
(since the size of the regions Q controls the sparsity of the transformed
impedance matrix blocks). The number Kf of DBFs must be at least equal
to the Shannon number of the patch, i.e., the approximate number of linearly
independent band-limited functions (current distributions) supported on the
patch; this number is

K(M)) = 2ir_ , (2.40)A2,

where IMI is the area of the patch, and the additional factor 2 comes from
the two polarizations of the electromagnetic field.

Carrying out the task of minimizing the angular regions in a rigorous way
would lead to an extremely complex combinatorial problem, which would
be, in practice, impossible to solve. We resort, therefore, to approximate,
heuristically motivated (and based on numerical experience) methods.

We start with specifying a set of approximately uniformly distributed
directions and associated regions Q in which we would like the DBFs to
radiate. We take the number of regions as

Nn = pV, (2.41)

where p ; 1 is a "redundancy factor" and ne is the desired average number of
well-concentrated eigen-solutions per region. We adjust this number based
on the considerations of numerical efficiency, since the cost of constructing
more eigensolutions for a single region is lower than constructing them for
separate regions; on the other hand, specifying too large regions may deteri-
orate angular concentration. We found that a reasonable number is of order
10.

The redundancy factor accounts for the likely possibility that (e.g., due
to symmetries of the geometry) not all created DBFs will be sufficiently
linearly independent; it also compensates for the unlikely cases where the
DBF construction fails (i.e., no concentrated solutions are obtained for any
reasonably small region Ql - see below). The number of solutions ne depends
on the size of the region, which implies that we have to choose "tentative"
region sizes accordingly. An approximate value of the opening half-angle O0
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of the region Q is

o ODN = - (2.42)

Having determined the set of "tentative" angular regions Q of angular
widths On, we construct DBFs for each region n independently. As the first
approximation, we evaluate the spherical-cap concentration function [13],
say x(4), of the assumed angular width On, concentrated on Q. We then
project that angular distribution on the space spanned by radiating modes
u . As a result, we obtain a modified angular distribution ý(el) whose shape
exhibits the features of the geometry; e.g., for a geometry with a symmetry
plane, the modified distribution will have two peaks, symmetric with respect
to the plane. We use the projected angular distribution to determine the
updated region 0 as the set of directions in which the values of j exceed
a given threshold. We then solve the eigen-problem for the region i, and,
if the required concentration conditions are not met, we keep modifying
(usually expanding) the region Q until we obtain at least n,, acceptable
solutions. The region Q2 is being updated based on the behavior of the best
concentrated solutions: we include in Q directions in which the obtained
radiation patterns exceed a threshold value.

The above procedure of finding the regions 9) usually terminates after
few (typically about 5) steps, depending on the selected direction, initial size
of the region, thresholds, etc. In rare cases the region Q expands until it
covers the full solid angle (or most of it). These "failed" solutions are likely
to be eliminated in the stage of selecting the optimal subset of linearly
independent DBFs (as described below).

In our example we constructed Nn = 134 initial angular regions, and we
obtained, on the average, 5 acceptable solutions per region, i.e., the total of
710 DBFs - about 1.3 times more than the required number. There were no
"failed" construction cases, and the power leaks for the DBFs ranged from
1- ý = 3.54 e-8 to 1- = 9.99 e-6, with the average 1 - -= 3.79 e-6. The
angular regions covered from about 8 % to 53 % of the quadrature points,
with the average of 18 %.

2.4 A multilevel scheme of DBF construction

One of the practical difficulties in numerical DBF construction is its compu-
tational cost, rapidly increasing with the patch size and the number of MoM
unknowns n on the patch. The main contribution to the cost, growing as
n3, is due to the eigenvalue (or singular-value) analysis. At the same time,
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sufficiently large patch sizes are necessary in order to achieve an impedance
compression which would would be competitive with those of more conven-
tional matrix compression methods.

In order to alleviate this difficulty, we have investigated (within a dif-
ferent contract) a possibility of a hierarchical, multi-level scheme of DBF
construction, in which DBFs on large patches are expressed as superposi-
tions of DBFs on smaller sub-patches. Here we briefly summarize the main
results, in order to indicate that construction of DBFs on large patches (of

sizes of tens of wavelengths) may be feasible.

Our approach to the multi-level DBF construction is analogous to
antenna-array synthesis, in which the array radiation pattern is a superpo-
sition of radiation patterns of its elements (DBFs of the sub-patches) with
coefficients ensuring an optimal angular collimation of the array pattern.
Such an optimization problem results, again, in a generalized eigenequa-
tion for the coefficients multiplying the sub-patch DBFs. In a more detailed
analysis of the problem we found that a nearly optimally collimated DBF ra-
diation into a certain solid angle 9 can be constructed by taking into account
only those DBFs for sub-patches which radiate in directions overlapping the
angular region Q; this fact significantly lowers the computational cost of the
construction.

As a numerical example, we present the DBF computation for a set of

four adjacent level-1 patches of sizes about 3,\ x 3,X of a curved surface,
forming a single level-2 patch of size about 6,\ x 6A.

Typical results are given in the Table I below. The third column gives the
percentage of the solid angle covered, on the average, by the DBF radiation
pattern, defined by requiring that the fraction of power radiated outside the
DBF angular region is less than 10-4. The total matrix compression is the
product of the factor in the fourth column and an additional compression
(ranging here from 0.40 to 0.10) due to elimination of a part of weakly
radiating modes.
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Table I
DBF collimation and construction costs

patch size unknowns IQI/4ir compression time/unknown time/unknown

single level multi-level

1.5 A 330 45% 0.80 0.2 s -

3.0 A 1300 18% 0.14 2.0 s 2.0 s

6.0 A 5200 6% 0.01 16.0 s 2.2 s

The Table shows scaling of the width of the radiation pattern of the DBF
with its support size, the resulting sparsity of the far-field impedance matrix
blocks, and is consistent with the computational cost of DBF construction
(per unknown) approaches a constant, as expected on theoretical grounds
(the total cost of constructing all DBFs should scale with the number of
unknowns N as O(N log N)). The times given in the Table were obtained
in a computation on a single AMD Athlon processor.

Figs. 15 - 18 below visualize the behavior of a level-2 DBF constructed
using all level-1 DBFs, and only the subset of the angularly overlapping
DBFs.

#q: 129 /5832 #q: 129 /5832

h_0001-MQ h 0001_MQ
0.0001 0.0001

0.001 0.001
0.01 0.01

0.11

n 2 4 - - --- 80 0"n• 2 ._h - 80 "-

Figure 15: The radiation pattern Figure 16; The radiation pattern
of a level-2 DBF constructed using of Fig. 15 plotted in logarithmic

all level-i DBFs. scale.
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Figure 17: The radiation pattern Figure 18: 'The radiation pattern
of a level-2 DBF constructed using of Fig. 1'7 plotted in logarithmic
only a subset of overlapping level- scale.
1 DBFs.

2.5 Analysis of the conditioning problem

We give here an account of our analysis of the ill-conditioning difficulties
associated with the DBFs, and of our attempts at their resolution. We start
with indicating a relation between band-limited source distributions and
far-field couplings; we then proceed to discussing modifications of the power
operators which lead to improved spectra of band-limited eigenfunctions,
and to describing an alternative iterative solution scheme which, to large
extent, circumvents the conditioning problem.

2.5.1 Computation of "far-field" matrix blocks in the DBF space

In Section 2.2.2 we expressed the matrix elements of the impedance ma-
trix in the DBF space A• in terms of the matrix elements in the basis of
the "radiation modes". Similarly, the matrix A4 can be evaluated by first

computing matrix blocks in the MoM basis, and then transforming them to
the DBF space. However, such a procedure is computationally expensive
(the cost per transformed blocks is O(n 3 ), where n is the average number
of unknowns associated with the patch).

For this reason, in the implementation of the algorithm we used an alter-
native expression for the DBF matrix elements, based on the Fast Multipole
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Method (FMM), which allows us to compute the blocks of the matrix A
for sufficiently distant patches at a much lower cost, proportional to n2 for
patches of sizes larger than few wavelengths. We mention this algorithm at
this point, since it also allows us to find upper bounds on the error in the far-
field matrix elements due to possible approximations done in construction
of DBFs.

We consider DBFs T(i) and Tj) associated with two patches, Mi and
Mj, such that the distance between the centers ci and ci of the smallest
spheres enclosing the patches is larger than the sum of the radii Ri and Rj
of the spheres, i.e.,

S= Jc jj =- - cjj > R + R j . (2.43)

In this case we say that the patches are, mutually, in their "far-field" range.
We can then utilize the well-known Fast Multipole Method (FMM) expres-
sion for the matrix element (2.34),

_-(ij) d_ Tf ~ie)I e)Taab - f a (kte), "T(c 2•J,(q)II J)(kqe), (2.44)
S2

where II(el) is given by Eq.(2.1),

(=) (k J f 2re-ik 4(r-c1 ) 'i)(r) (2.45)

is the Fourier transform of the DBF T(') relative to the center ci of the
patch Mi (and similarly for the other DBF), and T is the FMM diagonal
form,

ik Lmax
=k L m x e) . (2.46)

T(ciJ' el) = 47 E (2V + 1) i h~l) (k cij) Pt OkijC). (.6

Here (h1) is the spherical Hankel function of the first kind, P, is the Legendre

polynomial, and the truncation in the angular-momentum sum is approxi-
mately Lmax> k (Ri + Rj).

The essential feature of the representation (2.44) is that the matrix ele-
ment is expressed in terms of the Fourier transforms of the basis functions
with the arguments not larger than k. This means that the far-field ma-
trix elements are sensitive only to the band-limited components of the basis
functions.
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The above property of the representation (2.44) allows us to obtain an
upper bound on the error in the DBF matrix elements due to an approxima-
tion in the DBF: if the original basis function T(') is modified to •(a)+A a(a),

then, to the first order in Aa(j), the variation in the matrix element is
bounded by the expression

IA -(ij) 12 <Ml_1)p [A Tý]p[W
aab _ M(Ic 3I- ) ')] P[Z )] b (2.47)

where M(Icijl) is a function depending only on the distance between the
patches, and the factors P[... ] are total powers radiated by the current
distributions A T(') and T•j), defined as in Eqs. (2.1), (2.2), and (2.3).
Eq. (2.47) allows us to relate the error in the matrix elements to the eigen-
values 7 of the radiation modes included and neglected in the computation
of DBFs.

2.5.2 Alternative power operators and their spectral properties

As we discussed in Sections 2.2.1 and 2.2.2, the spectra and the eigenfunc-
tions of the power operator HM are the decisive factors controlling the
conditioning of the constructed set of DBFs.

We have investigated possibilities of improving the conditioning by tak-
ing advantage of some arbitrariness in the definition of the angular concen-
tration of the radiation patterns. This arbitrariness is due to the fact that,
if a radiation pattern is weighted by a smooth function, it remains concen-
trated independently of the shape of that function (provided its variation is
small over the concentration region).

We found that, by choosing appropriate weighting functions it is possible
to construct such modified angular power distribution that the correspond-
ing power operators (defined as in Section 2.2.1) have properties similar to
those of the "concentration problem" operators, such as giving rise to prolate
spheroidal wave functions and their generalizations, and which we encoun-
tered in the angular concentration problem. More specifically, the modified
power operators define concentration of the radiation modes in space (on
the patch surface).

The difference in the spectra of the original and the modified power
operators is shown in Fig. 19 for a curved patch M of size 3,N x 3k. We show
the spectrum of the original operator HM (normalized to 771 = 1), and two
modified operators denoted HMl and HM 2 .
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Figure 19: Spectra of the original power operator HM and modified opera-
tors HM, and HM2 for a patch of size MA x 3A.

The spectra of the modified operators are similar to those of the angular
concentration problem (Figs. 7 and 11): the highest eigenvalues are close to 1
(corresponding to current distributions well concentrated on the patch), and,
after a transition region, the eigenvalues rapidly (exponentially) approach
0, corresponding to spatially "deconcentrated" distributions.

By using the modified power operators instead of the original ones, we
are able to limit the range of the eigenvalues q, (since there are now more
eigenvalues close to 1 in the relevant part of the spectrum); this fact improves
conditioning of the DBF set. On the other hand, the spatially concentrated
eigenfunctions, being band-limited, have to smoothly vanish at the patch
boundaries, which requires utilizing overlapping patches, and causes deteri-
oration of conditioning. The eventual result depends on the choice of the
amount of overlap, and on the procedure of eliminating a part of the lin-
early dependent DBFs; we have not yet been able to find appropriate criteria
ensuring reasonable DBF conditioning.

2.5.3 An alternative scattering problem solution scheme

In Section 2.2.2 we formulated the scattering problem by discretizing the
integral-equation, alternatively, in terms of the "radiation modes" and in
terms of DBFs. In close analogy, the conventional MoM matrix equation

Ax=b (2.48)
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can be transformed to the DBF form

A4 =b (2.49)

(Eq. (2.33)) with

A=yHAY, (2.50a)

S= yH b, (2.50b)

X = YF •, (2.50c)

where Y is the transformation matrix expressing DBFs as linear combina-
tions of the MoM basis functions.4

However, ill-conditioning of the system of DBFs (and thus the trans-
formation matrix Y), causes ill-conditioning of the impedance matrix A,
which may, in practice, preclude solving the problem directly (by matrix
inversion). In fact, in the problems we were attempting to solve, we were
not able to obtain stable solutions by means of the LU decomposition of the
matrix, and even the much more expensive Singular Value Decomposition

(SVD) algorithm was yielding ambiguous results.
In view of these difficulties, we implemented an alternative, iterative so-

lution scheme, in which the DBFs are utilized only to construct a compressed
representation of the impedance matrix. The procedure is as follows:

1. Separate the MoM impedance matrix into near-field and far-field
blocks (associated with pairs of patches), defined according to the
FMM criteria (Section 2.5.1),

A=An+Af . (2.51)

In our implementation we define patches by simply partitioning the
geometry into cubic boxes. The near-field matrix block are then those
coupling nearest-neighbor boxes, and the

2. Transform the far-field part of the matrix to the DBF space,

A f= yR Af Y (2.52)

(in the practical implementation we compute the blocks of A directly
rather than by transformation, as mentioned in the last footnote).

4In a practical implementation direct computation of the matrix A and its transforma-
tion would be too costly, and the transformed equation has to be constructed in a more
economical way. In our implementation we compute MoM matrix blocks and transform
them only in the near-field range, and evaluate the far-field matrix blocks by means of the
FMM algorithm, as described in Section 2.5.1, Eq.(2.45).



29

3. Compute the inverse transformation matrix

R = Y-1 (2.53)

(this matrix is also block-diagonal).

3. Solve iteratively the original equations (2.48) with the matrix A rep-
resented as

A = A. + R R (2.54)

and with the matrix-vector multiplication y = A x implemented as the
sequence of operations

y := Rx , (2.55a)

y fy Y, (2.55b)

y :- RH y (2.55c)

y:=Anx+Y . (2.55d)

Thus, the above scheme uses the DBF representation to form a compressed
representation (2.54) of the original matrix A: in Eq.(2.54) A. is block-
sparse, R is block-diagonal, and blocks of Af are sparse, provided the colli-
mation of radiation patterns of the DBFs is sufficient.

While the procedure avoids transformation of near-field matrix blocks,
there remains the problem of inverting the poorly conditioned transforma-
tion blocks Y. In practice, we found that task manageable, and were able to
obtain reliable iterative solutions consistent with the original MoM solutions.

3 Developments in the formulation of fast direct
solver (Yale University report)

Our work under this contract can be roughly subdivided into two parts:
development of tools specific to the problems to be addressed, and the work
involving collateral issues. As often happens, in a number of cases collateral
issues had to be addressed in order to deal effectively with the principal sub-
ject of research. Below is a brief discussion of both types of issues addressed
by the project.
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In addition to these investigations, we have been reporting results ob-
tained recently (but prior to the start of the current contract). These can
be found in [21], [22], [23],

1. We designed and implemented a fast direct solver for objects in both two
and three dimensions that are long and thin. This work involved the "fast"
element of the algorithm, the rapidly convergent discretizations in various
situations, and the required asymptotic analysis. An important feature of
the scheme is its effectiveness in both high and low-frequency environment.
This work has been reported in [18]; the scheme has been generalized to two
dimensions, and the algorithm is being implemented.

2. One of spin-offs of this activity is an observation that given a set of n very
general bounded functions 01, 02, ... , Vn (with a finite n), there exist sta-
ble n-point interpolation and quadrature formulae exact on the linear space
spanned by the functions p1, V2,.. , .. This is a somewhat unexpected
observation, and its proof depends entirely on linear algebraic arguments;
we have also implemented numerical algorithms for the construction of such
interpolation and quadrature formulae applicable in many situations of prac-
tical interest (in addition to the uses of such schemes in numerical scattering
theory). These results are reported in [19].

3. One of the principal tools in the development of algorithms of this type is
the concept of "skeletonization" (see, for example, [22]). Recently, it turned
out that under certain conditions (highly relevant to the design of scat-
tering algorithms), introducing a randomized element into skeletonization
schemes leads to radically improved efficiency and reliability. These results
are reported in [20]).
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